Painlevé Transcendents

Painlevé Transcendents

4.11 - 1251 ratings - Source

At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutions of the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.[Ma] A. P. Magnus, Painleve-type differential equations for the recurrence coefficients of semi- classical orthogonal polynomials, J. Computat. Appl. Math., 57 (1995), 215-237. ... Transcendents, Their Asymptotics and Physical Applications, Eds. D. Levi and P. Winternitz, NATO ASI Series B: Physics v. ... The alt;5- function Bose gas problem, Physica D v. ... A.E. Milne, P.A. Clarkson and A. P. Bassom, Backlund transformations and solution hierarchies for the third Painleve equation, Stud.

Title:Painlevé Transcendents
Author: A. S. Fokas
Publisher:American Mathematical Soc. - 2006

You must register with us as either a Registered User before you can Download this Book. You'll be greeted by a simple sign-up page.

Once you have finished the sign-up process, you will be redirected to your download Book page.

How it works:
  • 1. Register a free 1 month Trial Account.
  • 2. Download as many books as you like (Personal use)
  • 3. Cancel the membership at any time if not satisfied.

Click button below to register and download Ebook
Privacy Policy | Contact | DMCA